منابع مشابه
A voltage-sensor water pore.
Voltage-sensor (VS) domains cause the pore of voltage-gated ion channels to open and close in response to changes in transmembrane potential. Recent experimental studies suggest that VS domains are independent structural units. This independence is revealed dramatically by a voltage-dependent proton-selective channel (Hv), which has a sequence homologous to the VS domains of voltage-gated potas...
متن کاملReconstructing Voltage Sensor–Pore Interaction from a Fluorescence Scan of a Voltage-Gated K+ Channel
X-ray crystallography has made considerable recent progress in providing static structures of ion channels. Here we describe a complementary method-systematic fluorescence scanning-that reveals the structural dynamics of a channel. Local protein motion was measured from changes in the fluorescent intensity of a fluorophore attached at one of 37 positions in the pore domain and in the S4 voltage...
متن کاملIon Permeation through a Voltage- Sensitive Gating Pore in Brain Sodium Channels Having Voltage Sensor Mutations
Voltage-gated sodium channels activate in response to depolarization, but it is unknown whether the voltage-sensing arginines in their S4 segments pivot across the lipid bilayer as voltage sensor paddles or move through the protein in a gating pore. Here we report that mutation of pairs of arginine gating charges to glutamine induces cation permeation through a gating pore in domain II of the N...
متن کاملDissecting the Coupling between the Voltage Sensor and Pore Domains
The gating mechanism of K(v) channels is not known. In this issue of Neuron, Soler-Llavina et al. present fascinating results that support the concept of relatively independent voltage-sensing modules. However, they also find that its interactions with the pore domain are rather complex, with specific S4-S5 intersubunit contacts underlying the concerted transition leading to the channel opening.
متن کاملThe S4 Voltage Sensor Packs Against the Pore Domain in the KAT1 Voltage-Gated Potassium Channel
In voltage-gated ion channels, the S4 transmembrane segment responds to changes in membrane potential and controls channel opening. The local environment of S4 is still unknown, even regarding the basic question as to whether S4 is close to the pore domain. Relying on the ability of functional KAT1 channels to rescue potassium (K+) transport-deficient yeast, we have performed an unbiased mutage...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2006
ISSN: 0006-3495
DOI: 10.1529/biophysj.106.096065